In this course, you will learn to:
- Explain the benefits of MLOps
- Compare and contrast DevOps and MLOps
- Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
- Set up experimentation environments for MLOps with Amazon SageMaker
- Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
- Describe three options for creating a full CI/CD pipeline in an ML context
- Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
- Demonstrate how to monitor ML based solutions
- Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data